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We propose a way of obtaining the second and successive approximations in con- 

structing a solution by Chernyi’s method [l-3]. Limiting nonstationary flows of 
an inviscid gas were studied in [4, 51. 

1. We consider the self-similar motion of a gas behind a strong shock wave propa- 
gating according to the law 

z = rv& (s), y = N& (s) (1.1) 

Here 2 and y are Cartesian coordinates, N,, is a characteristic velocity of displacement 
of the shock wave front, and t is time. If we let s denote arc length of the wave front 
in the plane of self-similar variables, then the functions fi and f, must satisfy the con- 
dition f1’2 + fz’2 = 1. In the axisymmetric case we take the z, y plane to be a me- 
ridional plane with the s-axis as the axis of symmetry. 

We assume that all the hydrodynamic characteristics of the flow depend on two vari- 
ables g and q. We write the gasdynamic equations in Lagrangian variables ; by virtue 
of self-similarity, these variables are introduced in the form 
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Here to and 9 define,respectively, the time instant and the polar angle of the point at which 
a gas particle enters the shock layer. Then, combining the two equations of motion and 
the equation of continue, we obtain the system 

0.2) 

Here T is the reciprocal of the dimensionless density, p and i are the dimensionless 
pressure and enthalpy of the gas, and v = 0 for the two-dimensional case and v = 1 

for the axisymmetric case. The function C (9) is to be determined from conditions of 
dynamic compatibility at the shock wave front. The velocity vector components v,and 

Py referred to No, are related to the new unknown functions $, (p, $) and q (p, I#) by 
the equations 

VX = E - pF, Dy = rl - PI’ 

where the dot denotes differentiation with respect to p . 

We can use the system (1.2) for constructing a certain iteration process, where for the 
initial approximation it is convenient to take the limiting flow of gas, which is an exact 
solution of the gasdynamic equations for z = 0. In each ap~oximation the first two 
equations of (1.2) form a system for the determination of the law of gas particles motion, 
Once this law of motion has been determined, the pressure of gas is obtained from the 
third of the equations (1.2) and the enthalpy from rhe fourth equation. After determin- 

ing It from a knowledge of the pressure and enthalpy in the last of the equations (1.2). 
we can proceed to find the law of motion in the successive approximation from the non- 
linear system consisting of the first two of the equations (1.2). 

2. At the front of the shock wave (1. l), pro~gating at high speed through the quie- 
scent gas, we write the dynamic compatibility conditions (for p = 1) in the form 

E-E’=r(1 - r) cos y cos ($ - y) (2.1) 

3j - 3j’ = r (1 - T) Cos y sin (9 - y) 

p+ = 9 (1 - r) cos2 y, i, = 1/S (1 - T”) r2 cos2 y 
Here 

tg 7 = $ I r2 = fl” $- h2, 
f2 b-0) 

f&T II = m 

where y is the angle between the radius vector and the external normal to the shock 

wave front (1.1) and s,, is the value of the parameter s corresponding to the point at 
which the gas particle enters the shock layer. 

The equations (2.1) are valid for shock waves of great intensity, i. e. to the situation 
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in which terms of order oo2/N,’ can be neglected in comparison with the remaining 
terms (a,, is the sound speed in the quiescent gas ahead of the shock wave front) [6]. 

Using the first two relations, we find the function C f*) : 

C ($) = rv+2 (sin $)” (2.2) 

The form of the shock wave front r = r ($) is subject to determination, in the process 
of solving the problem, from an additional condition, As an example of such a condition 
we can have a condition of flowing around, a condition on a piston, and so forth. In this 

regard a useful formula is that for the distance of a particle from the shock wave front 
[5] in the plane of the self-simiIar variables 

hJ.P 
s 

“+‘~‘+* sin” L v r.‘2 + r.,2 + 
(2.3) 

P rl"Q (~9 140 

In some problems (for example, in the problem involving a piston) the formula (2.3) can 
be used to obtain the form of the shock wave front in a successive approximation without 
refining the law of motion of the particles. 

3, We assume that the solution of the system (1.2) is representable in the form q= 
qo -k eq,, where e is a characteristic value of the quantity ‘G (-co = 0). Then from the 
first two of the equations (X.2) we obtain the following system of equations for determin- 
ing the law of motion of the particles in the zero approximation (the limiting flow): 

(3.1) 

From the continuity equation we have q. = f (&,), where the form of the function f 

is determined by the form of the shock wave (1.1). Then the system of equations(3.1) 

reduces to a single equation 

go- (1 + P) + f’P (EO’) z = 0 

Integrating this equation with respect to l.~, we obtain 

s1’ 
1 + f- (Ed CL’h = IG (4) + G NJ) 

It follows from this that the path traversed by a particle in the shock layer along the 
shock wave front depends linearly on p. After determining the arbitrary functions 

C1 (9) and C, (4) fr om the conditions (2.1) with z = 0 , we can write the law of 
particle motion along the shock wave front in the form 

After determining the function r. (I#) from an additional condition, we proceed to a 
determination of the pressure. From tne third of the equations (1.2). upon taking into 
account (2.2). we have 
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We note that the pressure d~st~butions in the shock layer in the two-dimensional and 
axisymmetric case differ in the limiting flow. The general solution of Eq. (3.3) can 
be written in the form 

As the argument of the arbitrary function we can take, instead of qO or 8’. an arbitrary 

quantity characterizing the position of a particle during its motion along the shock wave 

front. Upon determining the arbitrary function from the third of the conditions (2.1) , 

we obtain the following expression for the pressure in the limiting case : 

From the fourth of equations (1.2) we have 

io = io+ (9) = $ PO+ w = + ro2 ;” r*,s 

(3.4) 

(3.5) 

We determine r1 from the equation of state (last relation in (1.2)) in terms of pO and 
i,, Thus, for example, for a thermodynamically perfect gas 

20 (*I 1 rd -- ” = p0 (p, $) = p0 t-2 + r~‘~ (3.6) 

4, For determining the subsequent terms of the expansion, from the first four equa- 
tions of (1.2) we obtain the system 

Here 

To Solve the inverse problem (i. e. where the wave front is specified) we must set 

r1 (11) = r,(q) = . . . = 0 

Gathering the terms in E , we find the boundary conditions for the system (4.1) from the 
conditions (2.1) 

j,* - A1 (9) rl + B1 (9) rl’ + 3 %’ (4.2) 
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Here A,, B,, DI and E, are known functions of Jo. Combining the first two of the 
equations (4. l), and then integrating the first of them, taking the first two of the rela- 
tions (4.2) into account, we obtain a system of two first order equations 

for tie determining the law of particle motion in a successive approximation. We can 

reduce the system (4,3) to a single second order equation ; for example, for the function 

(4.4) 

By changing from the independent variables p and II, to the variables Es and $,, we 

reduce Eq. (4,4) to the canonical form 

a2711 qo” aq1 

B--"- Eorlo 4 
= L Gil, 44 (4.5) 

The general solution of (4.5) can be written in the form 

To determine the function & (!&,, $1 we change over to the variables &, and 9 in the 

first equation of the system (4.3) 

Integrating with respect to 9, we obtain 

51 (Eo, 9) = 1 FI (Eat 9) d$ + 1 Eo’ tG (9) + Kr (Eo, %I a’# + G Go) (4- 7, 

For the determination of the three arbitrary functions C, ($), C, (Es) and C, (&,} we 
have the second equation of the system (4.3) and the two obvious conditions 
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El = rl cos 9, ql = r, sin tp for p = 1 (4.3) 

Satisfying the conditions (4.8). we obtain 
+ 

L= SF,(50,i)~~+~50.[cs(~)+K1(Eo.~)ld~+r1cos~ (4.3) 
Q ‘p 

from the relations (4.6) and (4.7). 

We determine the function c, t+,) from the second equation of the system (4.3). 
The solution of the third equation of (4.1) can be represented in the form (3.4). In the 
case of a thermodynamically perfect gas we have 

il (p, 9,) = il+ ($1 + 2io ($,) In ‘“~~‘) (4.10) 

from the last equation of the system (4.1). 
In constructing each successive approximation the system of equations for the coeffi- 

cients in the expansion of the unknown functions differ from the system (4.1) only in the 

terms of the right-hand sides and, consequently, can be integrated by the method presen- 
ted here. 

6, As an example we consider the problem involving the expansion of a piston, the 
equation for which, in the plane of the self-similar variables, we specify in the form 

(5.1) 

in order to simplify the calculations, Neglecting terms of order cc2 and higher, from (5.1) 
we have 

S=cp ++sin2cp+O(a~), cp = arctg $I- (5.2) 

where ‘p is the instantaneous polar angle in the E, TJ. plane. 
The shock wave front will coincide in the limiting flow with the surface of the piston 

ro ($) = 1 + a cos 29 + 0 (CC) 
(5.3) 

Substituting (5.2) and (5.3) into the relations (3.2), we obtain the law of particle motion 
in the form ‘p = $ + 2a (1 - p) sin 2% + 0 (c2j (5.4) 

E. = (1 + CC cos 2cp) cos (p, q0 = (1 + a cos 2%~) sin ‘p 

A problem concerning the motion of a nearly spherical piston was investigated in [7]; 
all terms depending on E and terms of the first order of smallness in a were taken into 

account. 
The integral in Eq. (3.4) i’s of order a2. If in &,+ we retain terms of the second order 

of smallness in a we obtain 

po==+2acos2~+a2 1-8sin22q+ 
[ 

+4 (Py+4 - 1) sin22q 
3 

+ 0 (a3) 

as the final expression for the pressure in the limiting flow. From the relations (3.5)and 
(3.6) we obtain the following expressions for a perfect gas, for tile enthalpy of the gas in 
the limiting flow and for the quantity r1 : 
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io = l/z [I + 2a co9 2q + a2 (1 - 8 sin2 2q)] + 0 (a”) (5.5) 

zl=i+ $4 (1 - Py+4) sina 29 -j- 0 (a3) 

To obtain the successive approximation for the form of the shock wave front we use 
the relation (2.3) with P = 0. We obtain 

r($)=l+acos2$+ * l-a 
[ 

2v + (5v + 1) cos 2g 

v+3 1 
Retaining the principal terms in Eqs(4.9) and taking the relations (5.4) into account, 

we find the law of particle motion in the successive approximation in the following form 

~=cos~(*+e~~+a[l-2(3-2?p)sina~j 
1 (5.6) 

1 

vt2 
q=sin$ Ifa- v;2-a[i--3 _ (3 - 2P) COS‘J $1 

I 

It is obvious that when P = 9 the particle coordinates given by the expressions (5.6) 

satisfy Eq. (5.1). Taking Eqs. ‘(5.5) and (4.10) into account, we obtain 

i = -& (1 + 2a cos 2q) + $ [i - 8 (2 - P) sina 2$1 -t v% [i _ 2a ’ - (2v-+v~ ‘OS ““1 

as the final expression for the enthalpy of the 

gas. 

For the approximation considered we find the 

gas pressure to be 

PC, 9) =i +2acoa2$+ 

a211 +8@--2)sin22@-t- 

& (cLvt4 - 1) sina 2$] $- 

e 
2 (v + 2) [ 1 - v - (v + 1) p2(“+2)1 

The pressure and enthalpy distribution along 
the surface of the axisymmetric piston areshown 

inFig.lfora=O:l. 

The author thanks A. A. Grib for his interest to this paper and G. A; Kolton for a useful 
discussion. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

REFERENCES 
Chernyi, G. G., 
Chernyi, G, G., 

Gas flows at High Supersonic Speed. Fizmatgiz, Moscow, 1959. 
Application of inte 

of strong shock waves. PMM Vol. 24, g, . 
;l ry&&onships in problems of propagation 

FadeevrS I Application of the shock layer method in unsteady one-dimen- 
sional motion’s ‘of a 

!e 
rfect gas with a zero tern erature radient. Izv. Sibirsk. 

Otdel. Akad. Nauk S SR, Ser. Tekhn. Nauk, Npl , Issue ff 8, 1967. 
Bogatko, V. I. and Kolton, G. A., Three-dimensional nonstationary mo,- 

tion of a gas behind a strong shock wave. Vestn. Leningrad. Gos. Univ. Np 1, 1971. 
Bogatko, V. I. and Kolton, G. A., Self-similar hypersonic flows of an 

inviscid gas. Vestn. Leningrad. Gas. Univ. , W 13, 1972. 
S e do v , L. I., Methods ofSimilarity and Dimensionality in Mechanics. Academic 

Press, New York, 1967. 
Mikhailova, M. P., Gas motion behind a nonsymmetric piston. Dokl. Akad. 

Nauk SSSR, Vol. 148, Np 1, 1963. 
Translated by I. F. H. 


